Г	Т		П	 T
JSN				

10CS42

Fourth Semester B.E. Degree Examination, June/July 2015 **Graph Theory and Combinatorics**

Time: 3 hrs.

18.06.2015 13:06.1 Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

Max. Marks: 100

PART - A

- For the following graph determine, 1
 - i) A walk from b to d that is not a trail
 - ii) A b-d trail that is not a path
 - iii) A path from b to d
 - iv) A closed walk from b to b that is not a circuit
 - v) A circuit from b to b that is not a cycle
 - vi) A cycle from b to b.

(06 Marks)

Fig.Q1(a)

- Define subgraph, spanning subgraph, induced subgraph and complete graph with example. (07 Marks)
- Prove that the undirected graph G = (V, E) has an Euler circuit if and only if G is connected (07 Marks) and every vertex in G has even degree.
- a. Define planar graph and prove that the following Petersen graph is nonplanar using (06 Marks) Kuratowski's theorem.

Fig.Q2(a)

- b. Prove that in a complete graph with n-vertices, where n is an odd number ≥ 3 , there are (07 Marks) (n-1)/2 edge – disjoint Hamiltonian cycles. (07 Marks)
- Find the chromatic polynomial for the following graph.

Fig.2Q(c) 1 of 3

be treated as malpractice any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50,

Prove that in every tree T = (V, E) |V| = |E| + 1.

(06 Marks)

- i) If $T_1 = (V_1, E_1)$ and $T_2 = (V_2, E_2)$ be two trees where $|E_1| = 17$ and $|V_2| = 2|V_1|$, then find $|V_1|$, $|V_2|$ and $|E_2|$
 - ii) Let $F_2 = (V_2, E_2)$ is a forest with $|V_2| = 62$ and $|E_2| = 51$, how many trees determine F_2

- c. Construct an optimal prefix code for the symbols a, o, q, u, y, z that occur with frequencies 20, 28, 4, 17, 12, 7 respectively.
- Using the Kruskal's algorithm, find a minimal spanning tree of the following weighted (06 Marks) graphs.

b. Using the Dijkstra's algorithm obtain the shortest path from vertex 1 to each of the other vertices in the following graph.

Fig.Q4(b) c. Prove that in a bipartite graph G(V1, V2, E) if there is a positive integer M such that the degree of every vertex in $V_1 \ge M \ge$ the degree of every vertex in V_2 , then there exists a (07 Marks) complete matching from V_1 to V_2 .

PART-B

- i) How many arrangements all there for all letters in the word SOCIOLOGICAL?
 - ii) In how many of these arrangements, A and G are adjacent?
 - iii) In how many of these arrangements, all the vowels are adjacent?

(06 Marks)

- b. Determine the co-efficient of:
 - i) x^9y^3 in the expansion of $(2x 3y)^{12}$
 - ii) $x \cdot y \cdot z^2$ in the expansion of $(2x y z)^4$
 - iii) $x^2 \cdot y^2 \cdot z^3$ in the expansion of $(3x 2y 4z)^7$.

(07 Marks)

- c. Determine the number of integer solutions for : $x_1 + x_2 + x_3 + x_4 + x_5 < 40$, Where:
 - i) $x_i \ge 0, 1 \le i \le 5$
 - ii) $x_i \ge -3$, $1 \le i \le 5$.

(07 Marks)

- Find the number of integers between 1 to 10,000 inclusive, which are divisible by none of 5, 6 or 8.
 - b. Determine in how many ways can the letters in the word ARRANGEMENT be arranged so 16-2015 13:06. that there are exactly two pairs of consecutive identical letters.
 - i) Find the rook polynomial for the shaded chessboard

Fig: Q6(c)(i)

ii) Let $A = \{1, 2, 3, 4\}$ and $B = \{u \ v, w, x, y, z\}$. How many one to one functions $f: A \rightarrow B$ satisfy none of the following conditions:

 C_4 : f(4) = x, y or z. (07 Marks) $C_1: f(1) = u \text{ or } v; \quad C_2: f(2) = w; \quad C_3: f(3) = w \text{ or } C_3$

Find the coefficient of x^{15} in $\frac{(1+x)^4}{(1-x)^4}$. (06 Marks)

b. A ship carries 48 flags, 12 each of the colors red, white, blue and black. Twelve of these flags are placed on a vertical pole inorder to communicate a signal to other ships. Determine, how many of these signals have at least three white flags or no white flags at all.

c. Find the formula to express: $0^2 + 1^2 + 2^2 + \dots + n^2$ as a function of n using summation on operator.

Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$ and $F_1 = 1$. (06 Marks)

i) A bank pays 6% interest compounded quarterly. If Laura invests \$ 100 then how many months must she wait for her money to double?

- The number of bacteria in a culture is 1000 and this number increases 250% every 2 hours. Use a recurrence relation to determine the number of bacteria present after one
- Solve the recurrence relation: $a_{n+2} 5a_{n+1} + 6a_n = 2$, $n \ge 0$, $a_0 = 3$, $a_1 = 7$ using method of (07 Marks) generating functions.